

Test: Attention Is All You Need
这篇论文提出了 Transformer 架构,彻底改变了自然语言处理领域。本文记录了我的阅读笔记和关键见解。
views
Attention Is All You Need Attention You NeedAttention Is
xxxxxxx
2017 123,456 citations
Transformer Attention Mechanism Neural Networks Neural Networks Neural Networks Neural Networks Neural Networks
Book
View >>
No.99
Change adaptively
One way to increase the performance of our model is to let the optimizer change adaptively.
Attention Is All You Need
Introducing the Transformer architecture
2017 123,456 citations
Transformer Attention Mechanism Neural Networks
Article
No.01
Attention Is All You Need Attention You NeedAttention Is
2017
Transformer Attention Mechanism Neural Networks Neural Networks Neural Networks Neural Networks Neural Networks
Article
No.1002
##### The Euler formula:
As we know, the Euler formula is …
核心创新点#
-
纯注意力机制
- 完全抛弃了循环和卷积结构
- 通过自注意力机制实现并行计算
- 显著提高了训练效率
-
多头注意力
- 允许模型关注不同的表示子空间
- 增强了模型的表达能力
- 提供了更丰富的特征提取能力
关键架构设计#
Encoder-Decoder 结构#
graph TD A[Input Embedding] --> B[Encoder Stack] B --> C[Decoder Stack] C --> D[Output Probabilities] subgraph "Encoder Block" E[Self-Attention] F[Feed Forward] end subgraph "Decoder Block" G[Masked Self-Attention] H[Encoder-Decoder Attention] I[Feed Forward] end
位置编码#
位置编码使用正弦和余弦函数:
实验结果#
关键发现
Transformer 在多个翻译任务上都取得了当时最好的效果,同时训练时间显著减少。
模型 | BLEU 分数 | 训练时间 |
---|---|---|
Transformer (base) | 27.3 | 12 小时 |
Transformer (big) | 28.4 | 3.5 天 |
ConvS2S | 26.4 | N/A |
GNMT + RL | 26.3 | N/A |
个人思考#
-
Transformer 架构的优势:
- 并行计算能力强
- 可以捕获长距离依赖
- 模型可解释性较好
-
潜在局限:
- 计算复杂度随序列长度呈平方增长
- 位置编码方案可能不够优雅
- 在某些特定任务上可能不如专门设计的模型
影响与启发#
这篇论文开创了 NLP 领域的新范式,影响深远:
- GPT 系列模型都基于 Transformer 架构
- BERT 等双向编码模型的基础
- 启发了 ViT 等计算机视觉模型
推荐阅读
如果你对 Transformer 感兴趣,强烈推荐阅读 “The Annotated Transformer” 这篇博客,它提供了详细的代码实现讲解。